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ABSTRACT

Computerized systems capable of generating high-level story descriptions have many poten-

tial real-life applications. However, enabling computers to do so requires teaching computers

to obtain an abstract understanding of natural language stories algorithmically, which is one

of the non-trivial problems in Artificial Intelligence and Natural Language Processing.

In this dissertation, we tackle the challenge of automatically characterizing stories at a

high-level by generating a set of tags from narrative texts written in English. We start by

presenting a background study on the problem, discuss the required resources for research,

and propose a new corpus to facilitate research on high-level story understanding by selecting

tag prediction for movies as an application of this problem. Then, we focus on designing

methods for high-level story understanding from written narratives and predicting tags for

movies from the written plot synopses. First, we employ a wide range of linguistic features to

design a machine learning approach for generating descriptive tags for stories from narrative

texts. At the next step, we design a neural methodology for modeling the flow of emotions

throughout stories and enhance a system that uses a high-level representation of narrative

texts to predict tags. We furthermore exploit the hierarchical structure of text documents

to encode the synopses and strengthen the tag prediction mechanism. In the final part

of this dissertation, we demonstrate a technique utilizing user reviews to generate tags for

characterizing stories at a high-level. We made the new dataset, the source code of the

systems, and a live tag prediction system publicly available to the community to encourage

further exploration in the direction of automatic story characterization.
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Chapter 1

Introduction

\But how could you live and have no story to tell?"

- Fyodor Dostoevsky

Stories are an inseparable part of mankind from the very beginning of the evolution of

Homo sapiens. From the paintings on the wall of ancient caves to today's modern civilization,

it is fascinating to see how mankind kept telling their stories in many forms for centuries after

centuries. From ancient times, parents tell bedtime stories to their children as an enjoyable

way to teach them what is right and what is wrong. Stories help us to learn about di�erent

cultures, values, and history. We can easily take a break from our life by reading a �ctional

novel or watching a fantasy �lm. Biographical narratives of brave individuals like Martin

Luther King Jr. inspire us to stand up for what we believe. Horror stories can trigger the

�ght-or-ight response within our body and help the secretion of feel-good hormones like

Serotonin. Fairy tales make us want to believe that in the end, the good will win against

all the evils. Thus, and in many other ways, stories have a large impact on our lives and in

fact, we all have our own life stories and we absolutely love it when people �nd our stories

enjoyable.
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1.1 Less is more

Revolution in technology has accelerated the production of stories written for commercial

purposes. Keeping pace with the growing number of consumers, more novels are being

published each year and the annual �lm production rate is also higher than the past. Now

the consumers have a lot of options to try and navigating through more options requires more

time. Often people read or listen to the summary of stories to get an idea about a book or

movie, which helps them to make a selection. For instance, book and movie recommendation

systems like Goodreads1 and the International Movie Database (IMDB)2 o�er the summary

of a book or movie's storyline to help their users with making choices.

The need for summarizing the enormous amount of texts in di�erent domains triggered

the need for techniques that are capable of producing the summary of a text document.

Automatic text summarization techniques are broadly divided into the following categories:

1. Extractive Summarization: The summary is obtained by identifying and extracting

key parts of a document.

2. Abstractive Summarization: The summary isgeneratedby understanding the se-

mantics and topics from a document and rephrasing the document in a shorter version

which is expected to be similar to how a human would rephrase the document by

keeping the meaning unchanged.

Story summaries can be helpful for consumers to save the time for reading a whole book

or watching a movie, but when it comes to selecting just one story to enjoy from a vast

collection of options, summaries can still be too long for reading to make a selection. In

such cases, a more suitable solution could be an extreme form of summarization, which is

1goodreads.com
2imdb.com
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to characterize and describe stories by a small set of short text labels calledTags. The

advantage of tags over the summary is that tags are a much faster way to let people know

the essence of a story.

Stories have life and life needs to be understood to rephrase the gist correctly. Hence,

being able to automatically describe a story with a small set of tags, we need to design

e�cient abstraction techniques to understand a story at such a level, so that the generated

tags will match what a human would use to describe the story. We de�ne such a process

as High-level Story Understanding . In this dissertation, we want to achieve high-level

story understanding asbeing able to understand the core elements of a story like a theme,

emotions, events, genre, impact on consumers, and summarize these into a high-level form

like tags.

1.2 Motivation: A Case Study on Movies

1.2.1 The Dilemma of Choice

Thousands of movies are being produced every year on average (Figure 1.1). It is not

surprising for anyone to go adrift in this vast ocean to �nd the right movie to watch. In

such situations, the role of rescuers is usually taken by promotional materials, news articles,

critics, and friends. With the rapid advancement of technology, numerous web-based services

like IMDB, Rotten Tomatoes,3 MovieLens4 have been created to assist people in making

their choices. In recent years, several online streaming services like Netix5 and Hulu6 have

appeared and are capable of recommending movies and TV shows to their users. Such

streaming services o�er thousands of movies and TV shows to watch for their users in

3http://www.rottentomatoes.com
4http://www.movielens.org
5http://www.netflix.com
6http://www.hulu.com
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Figure 1.1: Wordwide movie production in 2017. Source: UNESCO Institute for Statistics.
http://uis.unesco.org/en/news/cinema-data-release

exchange for a not so expensive monthly subscription fee.

Online streaming services like Netix try to maintain a strong dynamic recommendation

engine to o�er personalized suggestions of movies and TV shows to their users. In general,

these services recommend movies by modeling users' behavior, like what type of movies a user

usually watches or what are the trending movies right now. For example, if such a system

detects that a user prefers to watch a speci�c type of movie, it will recommend more movies

of that type to that user. Such convenience attracted millions of people worldwide (Figure

1.2) to become a subscriber to these services and enjoy movies and TV shows anywhere,

anytime.
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Figure 1.2: User growth of Netix. Source:appinventiv.com

However, the current mechanism of recommendations is not always a pleasant experience

for the users. Especially these systems fail to provide any clear explanation if a user wants

to know, \How is the movie? How is the storyline? Why do you think I will like this movie?

I need inspiration at this moment, should I watch it?"Because in general, such systems do

not provide any e�ective way for the users to get the essence of any item at a glance. Even

though these systems often show posters, scenes, a summary of plot, and genres to facilitate

recommendations, it is a daunting task for a user to make sense of this information in a short

amount of time and pick a movie to watch among the hundreds of suggested options. It leads

the users to such a mental state where they do not have reasonable control over the selection

process. It has been observed that possessing the control to choose something helps to feel
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good and the inability to do so is naturally unpleasant and stressful [41]. Without a clear

way to analyze the options, choosing a movie can be frustrating for a user and sometimes

they fail to select anything at all.

1.2.2 Letting People Know before They Choose

If a system can let users know what a storyline has to o�er, users will be able to gain

more control over their choices. Two sources could be utilized to retrieve and present such

information to users.

From the synopsis: The story is the founding block of any movie, that accompanied

by audio-visual representation becomes live on screen. Major elements of stories like the

characters' personality, the chemistry between the characters, and events surrounding them

mostly determine what people will experience about the movie. The gist of the story could be

found by reading its script or plot synopses without the need of watching the entire movie.

We argue that these textual representations have su�cient information to allow users to

predict what to expect from the movie.

From the people who watched it: Almost every movie recommendation service provides

a mechanism for the viewers so that they can leave feedback on the movies they have watched.

Star ratings and written user reviews are examples of such a mechanism. In user reviews,

people can express their opinion about the movies such as, how was the story, what did

they like, how they felt emotionally and so on (Figure 1.3). Such opinions often reect story

attributes and extracting them as a tagset can help other people to get an idea about the

movie.

Despite the indubitable e�ectiveness, making sense of the story and countless reviews of

a movie by reading will require a considerable amount of time for users. It is not an easy

task either to grasp this large amount of texts. One way to make life easier for users is to
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Figure 1.3: Example feedback in IMDb showing the star rating and the written review
provided by a user. Highlighted segments show what the particular user experienced about
the movie that could be also useful for recommending this particular movie to other potential
viewers.

�nd out the key attributes of stories automatically from these texts and present them as

tags in front of users.

User-generated tags for online items are bene�cial for both the users and content providers

in modern web technologies. For instance, the capability of tags in providing a quick glimpse

of items can assist users to pick items precisely based on their taste and mood. On the other

hand, such strength of tags enables them to act as strong search keywords and e�cient

features for recommendation engines [56, 97, 59, 14]. As a result, websites for di�erent

medias like photography,7 literature,8 �lm, 9 and music10 have adopted this system to make

information retrieval easier. Such systems are often referred to as Folksonomy [106], social

tagging, or collaborative tagging.

In some movie review websites like IMDB, people can assign tags to movies after watching

them. These tags often represent summarized characteristics of the movies such as emotional

7http://www.flickr.com
8http://www.goodreads.com
9http://www.imdb.com

10http://www.last.fm
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experiences, events, genre, character types, and emotional impacts. However, this situation

is not the same for all of the movies. Usually, popular movies have a lot of tags as they

tend to reach a higher number of users on these sites. On the other hand, low pro�le movies

that fail to reach such an audience have very small or empty tagsets. In an investigation, we

found that � 34% of the movies among the top� 130K movies of 22 genres11 in IMDB do

not have any tag at all. It is very likely that the lack of descriptive tags negatively a�ects

the chances of many movies being discovered.

High-level story understanding can act as a remedy in such a situation. An automatic

process to create tags for movies by high-level story understanding would reduce the de-

pendency on humans to accumulate tags for movies and these tags can help users to make

choices by providing a characterization of stories with just a few words.

1.2.3 Applicability

Although here we discuss how high-level story understanding can assist people in selecting

movies, the applicability of such a method is not limited to only this domain. For example,

tags generated by high-level story understanding could be employed to quickly describe story-

based items in many applications likebook recommendation systems, community writing

platforms, children storybooks, bibliotherapy, literary blogs, and news. These tags can help

people to make quicker selection of story-based items. Additionally, such tags can act as soft

categories to be used in recommendation and search systems.

11http://www.imdb.com/genre/
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1.3 Research Objectives

Using a set of tags to characterize stories can be seen as a surface-level representation of

stories empowered by a comprehensive dissection of the story elements. We hypothesize that

such a representation of stories can be achieved from the written narratives. Based on our

discussion in Section 1.2.2, we also argue that depending on the availability, user reviews

can also contribute to the characterization process. Therefore, the main research question

that we want to answer in this dissertation can be stated as the following:

Is it possible to develop computational approaches to extract a set of tags that provides a

reasonable high-level description of a story?

In other words, we want to investigate:

1. How can we design a method for generating a set of tags representing di�erent elements

of stories through high-level story understanding?

2. How can we develop a process to identify and extract di�erent attributes of stories

from user reviews?

The �rst part of squeezing a story into a set of tags can be seen as an extreme form of

abstraction of narrative texts, whereas the second part of detecting story attributes from the

reviews can be seen as a form of extraction based method. However, our goal of abstraction of

narratives is di�erent from abstractive text summarization. While abstractive summarization

on a narrative text is expected to distill major events likeboy meets girl and hero kills

villain, our task is to describe the entire story with high-level descriptors likeinspiring,

though-provoking, violenceand so on.

We lay out the following goals that we want to address in this dissertation, which will

eventually help the broader research community of Natural Language Processing (NLP):
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1. Resources: We notice the scarcity of suitable datasets for designing methods for

high-level story understanding. Thus, we aim at creating new resources as part of this

dissertation to facilitate research in this direction.

2. Computational Approaches for Story Abstraction: We want to investigate and

contribute multiple computational approaches for designing an automatic system for a

high-level understanding of stories. We will experiment and analyze the applicability of

a wide range of linguistic features. Additionally, we explore the feasibility of automatic

representation of narrative texts produced by Arti�cial Neural Networks (ANN) for

story characterization.

3. Un/Weakly-supervised Story Descriptor Extraction: We will work towards to

explore the scope of story attribute extraction from user reviews. Where problems of

this category are typically solved by supervised learning, we want to push this problem

in such a paradigm that has no direct supervision.

1.4 Contributions

In this dissertation, we make contributions in terms of resource and methodologies (Figure

1.4) to deal with the challenge of characterizing a story with a set of tags, where we select the

task of assigning tags to movies as an application of this problem. We explore two aspects

of the problem as part of this work. The �rst part is focused on designing methodologies

for high-level story understanding to infer story attributes from narrative texts, which we

consider as an extreme form of abstractive summarization. In the second part, we explore the

direction of extractive summarization for story characterization, where we aim at designing

techniques for learning to extract story attributes from reviews without direct supervision.
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Figure 1.4: Overview of the Contributions in this Dissertation.

As part of this dissertation, we develop new resources to facilitate research on story char-

acterization. We create a new corpus that contains the plot synopsis of� 15k movies and

a set of � 70 tags to support the task of high-level story understanding. This tagset is con-

structed from human assigned tags on movies in di�erent movie recommendation websites.

We methodologically �lter a large tag space to keep the tags that speci�cally describe various

properties of the storyline of movies (Chapter 4). This dataset is publicly available for people

to use in research purpose.12, 13 Additionally, we compile a collection of user reviews about

these movies from the web to enable research on extracting story attributes from reviews.

We build a benchmark machine learning based story representation system using a wide

range of linguistic features that is capable of generating a tagset for movies given the written

plot synopsis. Our experimented features capture lexical, syntactic, semantic, sentiments

and emotions based properties from the narratives, where we thoroughly investigate the

e�ectiveness of each property individually and also as part of di�erent feature combinations.

We �nd that the lexical representations act as strong features for such a system and chunk

12ritual.uh.edu/mpst-2018
13kaggle.com/cryptexcode/mpst-movie-plot-synopses-with-tags
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based representation of sentiments and emotions increases the capability of this system to

identify more attributes of stories.

At the next step, we study the scope of automatically learning the feature representations

from a synopsis using Convolutional Neural Networks (CNN). Inspired by our �ndings of

chunk-based representations of sentiments and emotions based features, we model the shifts

in emotions as a story progresses using Recurrent Neural Networks (RNN). We show that

combined with the textual feature representation produced by CNN, our proposed method

to capture the ow of emotions results in improved learning of diverse story attributes.

Then we look beyond considering a narrative text as a plain sequence of lexical units

and exploit the hierarchical representation in a document. We employ a neural model that

learns to automatically create a document representation by hierarchically learning the rep-

resentation and importance of the words and then the sentences in a narrative text. Our

experimental results show that being able to identify the importance of each word and sen-

tence plays a vital role in correctly identifying the tags for a story (Chapter 7).

Finally, we set out the task of extracting tags from movie reviews for story characteriza-

tion. For this purpose, we design a multi-view neural model to incorporate movie reviews

with the synopses to predict tags. Besides improving supervised tag prediction, such an

approach enables us to extract tags from the reviews in an unsupervised fashion (Chapter

8). All of the dataset and source code produced during this work are released as public and

we have observed growing interest in these resources from the NLP community.14

1.4.1 Publications

During my Ph.D. program, we worked on the following publications as part of this disserta-

tion:
14As of February 2020, the proposed dataset has been downloaded around 700 times.
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Proceedings of the 27th International Conference on Computational Linguistics, pages
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Chapter 2

Background

2.1 Computational Narrative Studies: An Overview

Computational Narrative Studies deals with developing algorithmic approaches to under-

stand, represent, and generate natural language stories. In this area of research, computa-

tional approaches have been applied to enhance the analysis and interpretation of written

narratives. We broadly divide these works into two categories, where the studies in the �rst

category focus on the low-level analysis of the individual characters and events, and the

second category of works concentrates on comprehending entire stories at a higher level.

2.1.1 Characters and their Activities

Characters are one of the key elements of a story. Therefore, studying the characters has

been a signi�cant part of computational approaches to understand and analyze stories. For

instance, Propp's theory [81] inuenced several works in the area of computational analysis

of narratives. According to this theory, all the characters in stories can be divided into seven
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abstract characters, which areHero, Villain, Dispatcher, Donor, (Magical) Helper, Sought-

for-person, and False Hero. Valls-Vargas et al. [104] developed a method to automatically

extract the characters in folk tales and classify their structural roles according to Propp's

theory. In their work, they usedsentence segmentation, parts of speech tagging, dependency

parsing, and co-reference resolutionto extract di�erent character entities and verb entities.

Then they identi�ed the relationship between the characters and actions that took place

in the stories. Utilizing this information, they assigned a character type to each of the

characters. For identifying characters from folk tales, Declerck et al. [24] took an ontology-

based approach. In a similar work, Bamman et al. [10] tried to model the latent personas

and roles of �lm characters using a Dirichlet Persona Model that uses structured linguistic

information from movie plots. Character identi�cation is also approached in Goyal et al. [34],

where the authors designed an approach to identify characters in fables. Finally, Mamede

and Chaleira [67] developed the Direct or Indirect Discourse (DID) system that is capable

of identifying characters in children's stories.

Understanding the interactions between the characters in a story are sometimes helpful

to understand the central theme or events of the story. For example,conicts accompanied

by violence and negative a�ect can indicate action or climax in a story. Several studies

explored this challenging problem from di�erent perspectives. For instance, Iyyer et al. [42]

took an unsupervised approach to model the relationship of two characters over the time

using a set of event descriptors likemarriage, murder, love, and sadness. In another similar

set of works, Chaturvedi et al. [19, 20] used the swing in sentiments over time to model the

evolving relationship between two characters.

Identi�cation of the characters and their interactions in stories advanced the development

of systems capable of inferring the high-level interconnection between all the characters in

a story through constructing social networks [1, 2, 3, 54]. Such models help to procure
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the overall scenario of the interplay between all the characters in a story hence aiding the

interpretation. However, as these studies focus on the low-level interpretation of stories, it

is somewhat di�cult to describe a story at high-level from such interpretations.

2.1.2 High-level Content Analysis

Over the years, high-level story analysis approaches primarily evolved around the problem

of identifying genres [13, 50, 79, 112]. The task of genre identi�cation deals with the de-

velopment of computational methods to automatically classify a narrative text into one or

more literary categories (e.g., horror, romance). One of the early approaches for this task

was taken by Stamatatos et al. [96], where they �rst extracted various stylistic markers from

texts and used those markers to classify the genre of a story. Worsham and Kalita [112] in-

vestigated how do themes evolve through the chapters of a book and how they compose the

overall genre. In their work, they studied di�erent deep learning architectures for identifying

the genre of books. Battu et al. [11] used movie plot synopses to classify the genre of movies.

While most of the works in this area focus on English texts, this particular work studied

the problem in the context of some other languages like Hindi, Telugu, Tamil, Malayalam,

Korean, French, and Japanese. Although the genre is somewhat helpful from a broad cat-

egorization perspective, in our work, we look beyond genre and focus on �nding out more

�ne-grained characteristics of stories.

Emotional Dynamics in Stories: Emotions are part and parcel of the characters in any

story. With time progressing, di�erent events take place in stories that a�ect the characters.

The famous American writer Kurt Vonnegut [108] once argued that \stories can be described

in terms of emotional shapes". Speci�cally, he insisted that the ups and downs of emotions

in a story form a shape, which he named as Emotional Arcs. He also claimed that, there are

six basic shapes of these emotional arcs, which are:
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1. Rags to riches (rise)

2. Tragedy or Riches to rags (fall)

3. Man in a hole (fall-rise)

4. Icarus (rise-fall)

5. Cinderella (rise-fall-rise)

6. Oedipus (fall-rise-fall)

Later, a group of data scientists conducted an experiment on novels and found that the

emotional arcs of stories are indeed dominated by six di�erent shapes [87], as Kurt Vonnegut

claimed. They concluded by providing empirical evidence that successful stories usually share

similar patterns in their emotional arcs. This �nding is signi�cant for our task of high-level

story understanding as unfolding the emotional arcs in computational models can bene�t

understanding various feeling related attributes of stories.

2.2 Automatic Tag Generation from Texts

Automatic tag generation from content-based analysis has drawn attention in di�erent do-

mains like music and images. For example, creating tags for music has been approached

by utilizing lyrics [105, 39], acoustic features from the tracks [29, 26], categorical emotion

models [51], and deep neural networks [21]. In the context of tag generation from textual

content, two notable systems are AutoTag [71] and TagAssist [95], which utilized the tex-

tual content to generate tags, aggregate information from similar blog posts to compile a

list of ranked tags to present to the authors of new blog posts. Similar works [48, 61, 98]

focused on recommending tags to users of BibSonomy1 (a social bookmark and publication

1https://www.bibsonomy.org
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Figure 2.1: Distinguishing Binary, Multi-class, and Multi-label Classi�cation. Each circle
represents a predictable class and highlighted circles represents the predicted classes.

sharing system) upon posting a new web page or publication as proposed systems in the

ECML PKDD Discovery Challenge 2008 [38] shared task. These systems made use of some

kind of out of content resources like user metadata, and tags assigned to similar resources

to generate tags.

In our work, we aim at looking at the textual content itself rather than using support-

ive metadata and making sense of the actual story. We analyze the written narratives to

understand various attributes of stories and generate a set of tags to describe the stories.

2.3 Multi-Label Classi�cation

In machine learning, classi�cation problems can be divided into three primary categories:

Binary Classi�cation, Multi-class Classi�cation, and Multi-label Classi�cation. Binary clas-

si�cation (Figure 2.1(a)) deals with assigning a single class to a given sample of data out of

two probable classes, where in Multi-class classi�cation, the goal is to categorize a sample

data into a single class out of three or more probable classes (Figure 2.1(b)). In Multi-label

classi�cation problems (Figure 2.1(c)), a sample can be categorized into one or more classes
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out of the possible number of classes. Our task of predicting tags to characterize stories

can be formulated as a multi-label classi�cation problem, as for a sample story, we want to

generate one or more tags.

Multi-label classi�cation is a challenging problem in machine learning due to the compli-

cations in training models and evaluation. Such classi�cation problems are often transformed

into multiple binary classi�cation problems [84, 85, 86], multi-class classi�cation problems

[103, 83, 101], or ensemble methods.

2.4 Aspect and Opinion Extraction from Reviews

Opinion extraction or opinion mining is a signi�cant problem in natural language processing.

The goal of an opinion extraction system is to identifying the key aspects of any product

and users' opinions about those aspects. For example, an opinion mining system working on

the reviews about a smartphone would try to �nd out what the users' are talking about key

features like the screen quality, battery lifetime, design, and performance. A summarized

representation of such insights (e.g.,78% of the users mentioned that the picture quality is

bad compared to the price) are extremely helpful for the future potential buyers. Moreover,

this information can help the manufacturers to design their next product.

There is a subtle distinction between the reviews of typical material products (e.g.,phone,

TV, furniture) and story-based items (e.g.,literature, �lm, blog ). In contrast to the usual

aspect based opinions (e.g.,battery, resolution, color), reviews of story-based items often

contain end users' feelings, important events of stories, or genre related information, which

are abstract in nature (e.g.,heart-warming, slasher, melodramatic) and do not have a very

speci�c target aspect. Extraction of such opinions about stories has been approached by

previous work using reviews of movies [118, 58] and books [60]. Such attempts are broadly
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divided into two categories. The �rst category deals with spotting words or phrases (ex-

cellent, fantastic, boring) used by people to express how they felt about the story and the

second category focuses on extracting important opinionated sentences from reviews and

generating a summary. In our work, while the primary task is to retrieve relevant attributes

from the pre-de�ned set of tags, we also build a system that can spot opinions.
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Chapter 3

MPST: A Corpus of Movie Plot

Synopses with Tags

In the previous chapter, we shed light on di�erent aspects related to the research on story

understanding. We pointed out that high-level story understanding did not get much at-

tention in the existing literature of natural language processing despite having the potential

to be utilized in many useful applications. As a result, there is no such resource that could

be directly used to build computational methods capable of extracting story related at-

tributes from a written narrative. We identify this as a gap that needs to be �lled at the

beginning stage of designing systems to characterize stories for enabling research and de-

velopment of story characterization systems. Therefore, we create the Movie Plot Synopses

with Tags (MPST) corpus usingMovieLens 20M dataset, Internet Movie DataBase (IMDb),

and Wikipedia. This corpus contains a �ne-grained set of 71 tags that are solely related to

story attributes and multi-label assignments between the tags and plot synopsis of 14,828

movies. Table 3.1 shows some samples from the MPST corpus.

Throughout the rest of this chapter, we will discuss the properties that a corpus should
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Table 3.1: Examples of movies and tags characterizing the story.

A Nightmare on Elm Street 3: Dream Warriors
Tags: fantasy, murder, cult, violence, horror, insanity

50 First Dates
Tags: comedy, prank, entertaining, romantic. ashback

have to be useful for building story characterization systems (Section 3.1), how we devel-

oped such a corpus that meets these requirements (Section 3.2), and we provide a thorough

statistical analysis on the corpus.

3.1 Expected Properties of the Corpus

As the �rst step towards building the MPST corpus, we de�ned four required properties

for the corpus that must be satis�ed to facilitate further research on high-level story under-

standing and characterization. These properties are explained below:

1. Tags should express story attributes that are easy to understand by people.

We identify predicting tags for movies from the plot synopses as an application of the

problem we want to tackle throughout this thesis. Therefore relevant tags for movies

are those that capture properties of only the stories (e.g., structure of the plot, genre,

emotional experience, storytelling style), and not attributes of the movie foreign to the

plot, such as metadata. More speci�cally, we want to infer the tags that can be directly

retrieved if we have only the story as input. Additionally, we also emphasize on the

fact that the tags should be easily understandable by common people. Therefore the

tagset should not consist of any jargon.
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2. The tagset should not be redundant.

Because we are interested in designing methods to automatically assign tags, having

multiple tags that represent the same property is not desirable. For example, tags like

cult, cult �lm , cult movie are closely related and should all be mapped to a single tag.

3. Tags should be well represented.

For each tag, there should be a su�cient number of plot synopses, so that the process

of characterizing a tag does not become di�cult for a machine learning system due to

data sparseness.

4. Plot synopses should be free of noise and adequate in content.

Plot synopses should be free of noise like IMDb noti�cations and HTML tags. Each

synopsis should have at least ten sentences, as understanding stories from very short

texts would be di�cult for any machine learning system.

3.2 Towards a Fine-grained Set of Tags

As shown in Figure 3.1, we collected a large number of user assigned tags fromMovieLens

20M datasetand IMDb. To extract the tags commonly used by the users, we only kept the

tags that were assigned to at least 100 movies. We manually examined these tags to shortlist

the tags that could be relevant to the storyline of movies. We discarded the tags that do

not conform to our requirements described in the previous section. At the next step, we

manually examined the tags in this shortlist to group semantically similar tags together. We

got 71 clusters of tags by this process and set a generalized tag label to represent the tags

of each cluster. For example,suspenseful, suspense, and tense were grouped into a cluster

labeledsuspenseful. Through this step, we overcame the redundancy issues in the tagset and

created a more generalized version of the common tags related to the plot synopses. The
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Figure 3.1: Overview of the data collection process.

tagset is shown as a word cloud in Figure 3.2.

We created the mapping between the movies and the 71 clusters using the tag assignment

information we collected fromMovieLens 20M datasetand IMDb. If a movie was tagged

with one or more tags from any cluster, we assigned the respective cluster label to that

movie. We used the IMDb IDs to crawl the plot synopses of the movies from IMDb. We

collected synopses from Wikipedia for the movies without plot synopses in IMDb or if the

synopses in Wikipedia were longer than the synopses in IMDb. These steps resulted in the

MPST corpus that contains 14,828 movie plot synopses where each movie has one or more

tags.
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